

Overall planning for decommissioning in Sweden

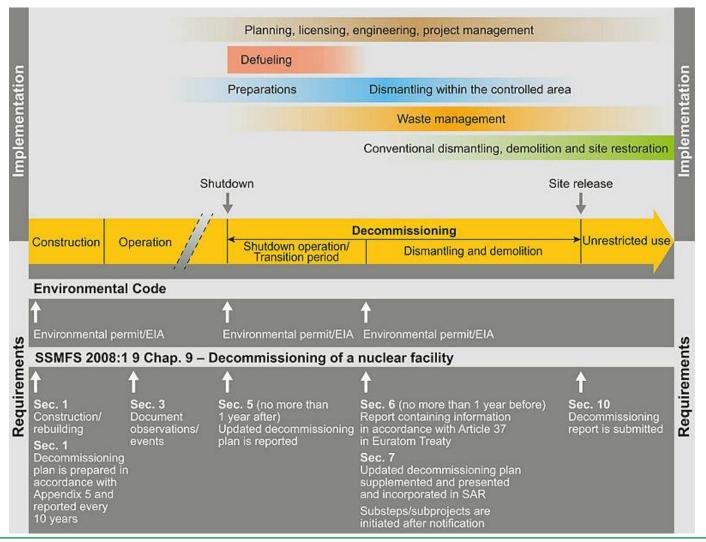
- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Introduction

- SKB is owned by the nuclear power companies
- SKB manage the radioactive waste from NPP in Sweden
- SKB operates in three places:
 - Stockholm head office
 - Forsmark/Östhammar SFR, repository for short lived LILW
 - Oskarhamn Clab interim storage facility, research laboratories

Finance

- Fees to the nuclear waste fund by the nuclear power companies
- · Waste management and decommissioning of NPP
- Based on SKB (and NPP) calculations/estimates and reviewed by SSM
- Decision by the government
- About 0,05 SEK/kWh for NPP in operation
- Barsebäck NPP, about one billion SEK per year



- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Phases/requirements/guidance

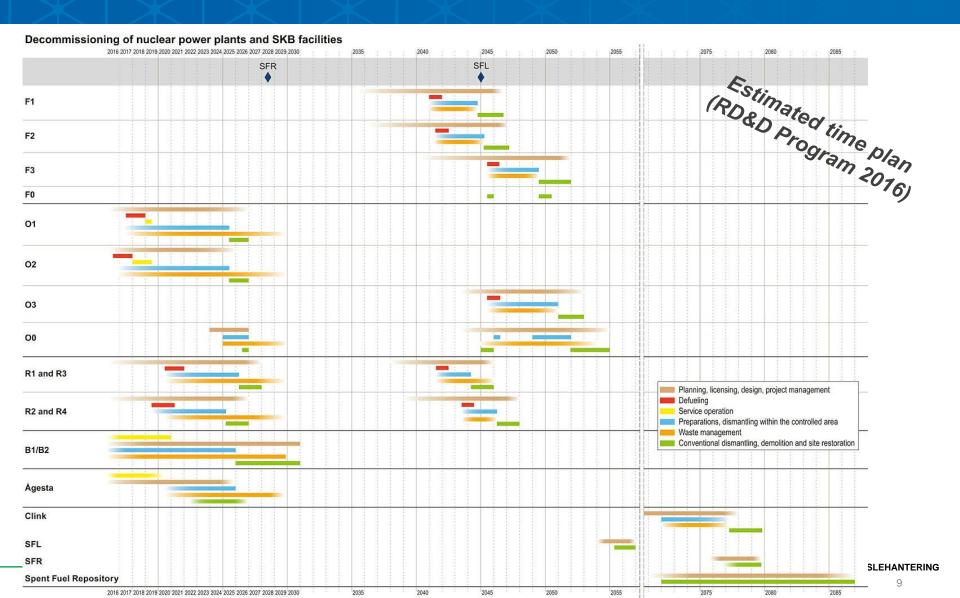
Overview of the different phases for execution of a power reactor's decommissioning as well as SSM's and the Environmental Code's requirements for decommissioning during the life of a nuclear facility.

Phases/requirements/guidance (cont.)

- Developed requirements from the authority
 - SAR for D&D
 - Decommissioning plan and decommissioning strategy
 - Waste management plan
 - Work packages for the execution of D&D
 - Preparatory work (during transition period)
- Guidelines within the industry
 - Clearance handbooks (operational and decommissioning aspects)
 - Position papers within the group of KSKG (Safety assessment D&D, Exemption, Work Packages D&D)
 - International cooperation, e.g. OECD/NEA reports

- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Overall decommissioning planning



Basis for decommissioning planning in Sweden

- Decommissioning is executed as efficient projects
- Planning and engineering to be finalised before final shut down
- Direct dismantling (as fast as possible after defueling)
- Fuel to be transported to Clab as soon as possible (defueling about one year)
- Primary circuit decontamination
- Activated components to be dismantled first (risk based approach)
- Proven techniques to be used
- The national waste management system/program to be used
- Interim storage (or final disposal) to be able to receive waste
- End state cleared facility/site to be used for other industrial purposes

Overall decommissioning planning

- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Decommissioning activities in Sweden

Barsebäck NPP

- Preparations of large scale D&D, public hearing (Environmental Impact Assessment) 2018-02-14
- Project HINT; on site interim storage in operation, segmentation of RPV internal (B2 finished, B1 ongoing)
- Project FOCT; new facility for sorting/characterisation/conditioning of intermediate level waste

OKG NPP

- Unit 2 is defueled (fuel transported to the SKB-Clab facility)
- Segmentation of RPV internals unit 2 started 14 May 2018 (Unit 1 spring 2019)
- Preparing specifications for segmentation of RPVs (unit 1 and 2) is ongoing

Ringhals NPP

- Preparations for Ringhals unit 1 and 2 final shutdown (end of 2020/2019)
 - Defueling, separation of unit 1/2 from unit 3/4, organisational aspects
- Program R12 Decommissioning started within Vattenfall (Business Unit Nuclear Decommissioning)
- Started projects (planning); primary circuit decontamination, segmentation of internals/RPV
- Hearing environmental court, license for shut down operation (EIA), 2018-05-22

Ågesta NPP

- · Program Ågesta decommissioning is started within Vattenfall (BUND responsible)
- Public hearing D&D license (Environmental Impact Assessment), 2018-02-20

Photo: OKG. Equipment for segmentation of RPV internals at unit 2.

Photo: BKAB. On site transportation of RPV internals to interim storage.

SVENSK KÄRNBRÄNSLEHANTERING

Decommissioning activities in Sweden (cont.)

- Decommissioning of research reactor in Studsvik
 - · Dismantling of reactors has been finalised
 - Dismantling/demolition of biological shield is ongoing
 - Facility ready to be cleared in 2019
- Decommissioning of the Ranstad uranium facility
 - To be finalised (cleared site) during 2018
 - Uranium mining and milling facilities (outside the city of Skövde) 1965-1969
 - Dose calculations according to specific waste routes (scenarios) fulfils the safety case
 - · Limits for specific clearance (exemption) have been decided for Ranstad
- Development of waste containers and waste type descriptions (acceptance criteria) for decommissioning
- Optimising segmentation of BWR pressure vessels ("from cradle to grave")
- Management of very low level radioactive waste from decommissioning
 - Local landfills at the NPP, conditional clearance, incineration, etc

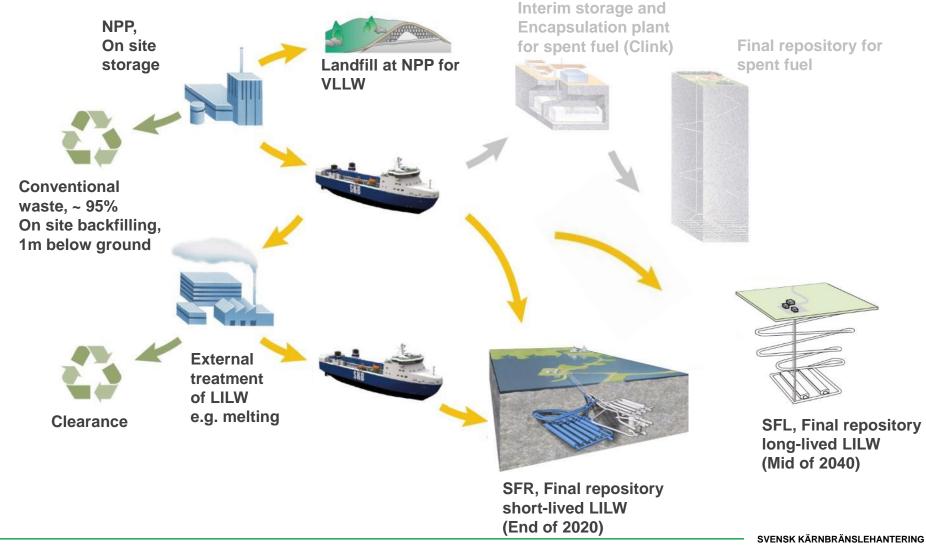


Photo: AB SVAFO. Demolition of biological shield, research reactor in Studsvik.

- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

NPP - Waste generators

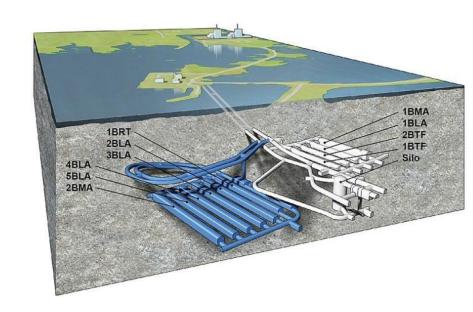
SKB - Waste transport/disposal

• Implemented routines/processes/packages for the *operational waste* will also be used for the decommissioning waste

• In order to optimise decommissioning:

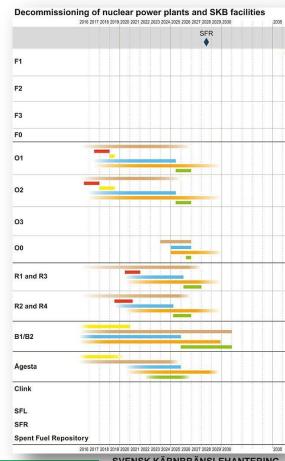
ILW

- Develop packages/waste types descriptions
- Manage large components (optimise segmentation)



Extension of the SFR facility

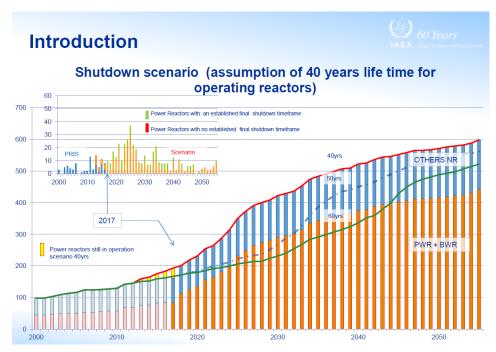
- Application handed in Dec 2014
- Final disposal for decommissioning (and operational) waste
- Vaults for disposing about 120 000 m³ LILW
- Vault/tunnel for 9 RPVs (BWR, segmented)
- Repository depth 117-137 m
- Disposing rock at the bay next to SFR


- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Challenges

Decommissioning of 7 nuclear power reactors

- Turning planning into execution
- Choosing the "right" strategy flexibility
- Optimising from "cradle to grave"
- Logistics
- **Decision making**
- Competences/resources
 - (NPP:s, SKB, SSM, etc)
- Ftc



- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Competences (today and future)

- Decommissioning is a wide topic
 - Planning and strategy
 - Cost estimates
 - Licensing
 - Waste management
 - Construction
 - Development of methods/techniques
 - · Waste inventory (calculations, etc)
 - Clarence and statistical approaches
 - Conventional environmental aspects
 - Q/A, managing data
 - Etc.

Source: IAEA, Symposium, Berlin, Germany, November 2017

- Need of resources/competences have increased
 - Implementers (NPP:s, SKB, SVAFO, etc)
 - Consultants/contractors (Westinghouse, Studsvik, Cyclife, etc)
 - Authorities (SSM, etc)
- Internationally highlighted to make decommissioning more attractive for the next generation

- Introduction
- Requirements/Phases/Guidance
- Overall decommissioning planning
- Decommissioning activities in Sweden
- Interaction between decommissioning and waste management
- Challenges
- Competences (today and future)
- Summary

Summary

- Challenge to decommissioning 7 nuclear reactors in Sweden
- Planning decommissioning from an end state perspective
- Importance of international collaboration
- The field of decommissioning and waste management needs to be highlighted and be attractive for students ("future colleagues")
- Funding of decommissioning and waste management is fundamental (having the "money")

